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Abstract: Drug-resistant forms of Mycobacterium tuberculosis (M. tuberculosis) are increasing world-

wide, underscoring the need to develop new drugs to treat the disease. One of the factors that make

tuberculosis difficult to treat is the unique architecture of the mycobacterial cell wall. In this review, we

catalogue the enzymes involved in the synthesis of the mycolylarabinogalactan (mAG), a key structural

component of the mycobacterial cell wall. In addition, we review the enzymes required for the synthesis of

the related lipoarabinomannan (LAM), a structure that possesses immunomodulatory properties. The

integrity of the mAG and LAM is critical to the viability of mycobacteria, and many of the established

antimycobacterial agents target enzymes critical to the synthesis of the mAG and LAM. Recently, new

enzymes catalyzing synthetic steps in the synthesis of the mAG and LAM have been characterized and

their substrate specificity determined. In this report, we review recent efforts to characterize the enzymes

involved in mAG and LAM synthesis and describe the compounds used to inhibit the enzymes or

characterize their catalytic activity. & 2010 Wiley Periodicals, Inc. Med Res Rev, 30, No. 2, 290–326, 2010
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1. INTRODUCTION

Tuberculosis (TB), once thought to be under control, is one of the leading causes of death
among infectious diseases.1 On an annual basis, active cases of TB account for 1.7 million
deaths around the world. There are about two billion individuals worldwide who are cur-
rently infected with Mycobacterium tuberculosis (M. tuberculosis), the causative agent for TB,
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but most never develop the active form of the disease. Infection rates continue to increase,
further highlighting the fact that TB remains a major health concern.2 In many countries, this
increase is exacerbated by both poor public health infrastructure and TB/HIV coinfection.
Combined, these factors contribute to the difficulty of TB control.

Also contributing to the difficulty in the control of TB is the rise of drug-resistant strains of
M. tuberculosis. The first antibiotic proven effective for the treatment of TB was streptomycin,
which was quickly followed by the characterization of streptomycin-resistant strains of
M. tuberculosis.3 Similarly, all single-drug TB treatments developed since the identification
of streptomycin-resistant M. tuberculosis strains have promoted the emergence of drug-resistant
strains. A response by physicians to single-drug-resistant strains is to employ another first-line
drug that inevitably selects for multidrug resistance (MDR) strains in the case of dual resistance
to isoniazid and rifampin. Failure of this strategy has led to the development and implementation
of complex drug combination therapies even for those infected with strains susceptible to all
first-line drugs. The complexity and length of these protocols often lead to patient non-
compliance, again contributing to the emergence of those strains that exhibit resistance.
Treatment of MDR-TB necessitates the use of less effective (and more expensive) second-line
drugs, which can lead to further drug resistance. The resulting extensively drug-resistant
strains (XDR) initially seemed unmanageable.4 The first account of XDR-TB described an out-
break in South Africa, in 2006, in which 52 out of 53 infected patients died within a median time
of 16 days from diagnosis.5 However, a more recent study describing XDR-TB in Russia pre-
sented more optimistic results, with 48% of the patients reaching a favorable outcome after
treatment.6 It is still unclear which scenario best describes the future of XDR-TB treatment and
outcome.

In addition to the selection process that leads to the accumulation of mutations promoting
antitubercular drug resistance, the mycobacterial bacillus possesses a complex cell wall struc-
ture. Indeed, the thick, multilayered, extremely hydrophobic cell envelope, which results in very
low cellular permeability, acts as a barrier against many classes of hydrophilic antibacterial
drugs. The general structure of the mycobacterial cell envelope is now well understood. The
basic model, proposed by Minnikin,7 identified a thick asymmetric lipid bilayer that is located
beyond the plasma membrane, the peptidoglycan, and an arabinogalactan (AG) layer esterified
with mycolic acids (mAG; Fig. 1). Chemical analysis of the cell envelope composition has also
revealed the presence of diverse noncovalently bound lipids, such as phosphatidyl-myo-inositol
mannosides (PIMs), lipopolysaccharides, such as lipoarabinomannans (LAM), and mannose-
capped lipoarabinomannans (ManLAM), depending on the Mycobacterium species. In slow-
growing mycobacterial species, such asM. tuberculosis, proteins and polysaccharides are present
in the outermost stratum known as the capsule. The exact location of LAM in the cell envelope
remains elusive, although it is known that the phosphatidyl myo-inositol serves as a cell wall
anchor in the bacterial plasma membrane.8 However, LM and LAM have been shown to be
exposed at the cell surface.9

LAM and mAG are the main lipopolysaccharides of the mycobacterial cell wall. These
key components insulate the bacteria from its environment and are essential for myco-
bacterial survival. In addition, they play diverse roles in the bacteria–host interactions.10

Structurally, the LAM and mAG share an arabinan moiety, but possess significantly dif-
ferent final superstructures. LAM is composed of a phosphatidylinositol (PI) group linked to
a branched arabinomannan core, while the mAG is a branched AG polymer esterified with
mycolic acids. Enzymes involved in the biosynthetic pathway of mycobacterial cell wall
building blocks used to synthesize LAM and mAG have frequently been targets of anti-
tubercular drugs. For example, the antitubercular drug isoniazid works by inhibiting the
biosynthesis of the mycolic acid component of the mAG.11 However, the strategy of targeting
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a single step in a biosynthetic pathway may not be the most effective approach in the
management of multidrug-resistant strains of mycobacteria.

To maximize drug effectiveness, it may be beneficial to target related enzymes with a
single inhibitor. For example, the M. smegmatis arabinosyltransferases EmbA and EmbB are
critical for formation of the hexaarabinoside motif found at the terminus of the AG.12

Similarly, the related M. smegmatis arabinosyltransferase EmbC is critical for LAM synth-
esis.13 Both the AG and the LAM are important for mycobacterial viability and virulence.
Ethambutol (EMB), an effective antimycobacterial drug, is known to inhibit arabinosylation
by acting on the arabinosyltransferases encoded by the embCAB gene cluster.14,15 Thus,
targeting related enzymes simultaneously may be a viable approach in developing new
therapies. Another important illustration is the antigen 85 complex (Ag85), the three para-
logous mycolyl transferase enzymes: Ag85A, Ag85B, and Ag85C. These enzymes catalyze the
transfer of mycolyl groups to the terminal arabinosyl moieties of AG to form mAG, as well
as mycolyl transfer that produces trehalose dimycolate (TDM) from two molecules of tre-
halose monomycolate (TMM); these two related pathways contribute to the viability of
mycobacteria and may affect virulence. It is easy to see, then, how simultaneously targeting
this enzymatic complex may help reduce incidence of resistance, as the possibility of all three
enzymes developing mutations at the same time is miniscule. For this reason, the study of
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Figure 1. Schematic representation of the general structure of the mycobacterial cell wall.
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mAG and LAM biosynthetic pathways is of interest for drug development by providing
many additional targets, and new strategies aimed at inhibiting these targets will be
important for the identification of new antitubercular therapies. In this report, we review the
recent progress toward the inhibition of mAG and LAM biosyntheses in pathogenic
mycobacteria. We will first focus on the recent advances on inhibition of the biosynthesis of
LAM, and then describe the progress toward mAG biosynthesis inhibition. Because LAM
and mAG bear similar structural features in the arabinan moiety, the structures share bio-
synthetic steps as well as common or structurally related enzymes. In the former case, their
inhibition will be addressed only once. In the latter case, when homologous enzymes are used,
the enzymes will be addressed separately.

2. LIPOARABINOMANNAN (LAM)

A. Structural Features and Roles of LAM and Inhibition

Across the Mycobacterium genus, LAM displays structural heterogeneity.16 Three different
structural classes of LAM have been identified: (1) a mannose-capped LAM (ManLAM)
found in slow-growing mycobacteria, such as M. tuberculosis, M. leprae, M. bovis, M. bovis
BCG, (2) a phospho-myo-inositol capped LAM (PILAM) found in fast-growing myco-
bacteria (M. smegmatis andM. fortuitum), and most recently (3) the LAM devoid of capping,
AraLAM, found in M. chelonae.10 Each LAM-type has a specific immunological activity
depending on their capping motif.16 For example, both ManLAM and PILAM play major
roles in regulating host immune responses, thereby contributing to the persistence of
pathogenic bacteria.11,16 In particular, they show immunosuppressive activities that promote
the survival of slow-growing bacteria in humans. PILAM has been found to activate Toll-like
receptor 2 (TLR-2) promoting release of a variety of proinflammatory cytokines.17 Man-
LAM was originally implicated in the inhibition of IL-12 and TNF-a production, both Th1
proinflammatory cytokines, the inhibition of M. tuberculosis-induced macrophage activation
and apoptosis.10 However, Pitarque et al. demonstrated that the binding to dendritic cells is
complex and involved more molecules than just ManLAM.18 Appelmelk et al. reported
similar results, showing that the mannose capping motif did not govern the mycobacteria–
host interactions.19

B. General Biosynthetic Pathway for LAM

Although a detailed description of the biosynthesis of LAM and its precursors, the lipo-
mannan (LM) and PIMs, is beyond the scope of this review and has been extensively re-
viewed elsewhere,10 a summary of the important biosynthetic steps are given below. Several
of the enzymes mediating LAM biosynthesis have been identified. The current model of
lipoglycan biosynthesis, which includes phosphatidyl-myo-inositol (PI), PIMs, and LM,
follows a pathway progressing from PI-PIM-LM-LAM,20 although Morita et al. have
shown that the biosynthesis of Ac2PIM2, and Ac2PIM6 may lie off the main pathway.21 The
current model of LAM-biosynthesis is shown in Scheme 1, as well as a structure of a
ManLAM (Fig. 2).22–24 Some of the early stages of biosynthesis for PIM homologues are not
fully understood and are still under investigation.

C. Biosynthesis of LM

In the early stages of linear LM biosynthesis (Scheme 1), myo-inositol is first phosphorylated
by a PI synthase, PgsA (Rv2612c), which uses CDP-diacylglycerol (CDP-DAG) as a
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diacylglycerol phosphate (DAG) donor to form PI.25 PI is glycosylated by PimA (Rv2610c)
using an a-mannopyranosyl (Manp) residue from GDP-mannose (GDP-Man) at the C-2
position of PI to form PIM1.

26,27 Biochemical experiments along with the crystal structure of
M. smegmatis PimA offer a clear understanding of the enzyme mechanism and provide
helpful information for future inhibitor design.28–30 PIM1 is further glycosylated at the C-6
position of the inositol moiety of PIM1, producing PIM2.

31 This second glycosylation may
occur before or after the acylation of PIM1 by an acyltransferase (Rv2611c)32 to give
AcPIM2. Recent work shows that this second a(1-6) mannosylation is catalyzed by an
enzyme now called PimB0 (Rv2188c),33 whereas the enzyme formerly called PimB (Rv0557)
has been renamed MgtA.34 MgtA has in fact been shown to be involved in the synthesis of a
novel mannosylated glycolipid, 1,2-di-O-C16/C18:1-(a-D-mannopyranosyl-(1-4)-(a-D-gluco-
pyranosyluronicacid)-(1-3)-glycerol (Man1GlcAGroAc2).

23,34

AcPIM2 is elaborated by a(1-6) mannosylation to form the LM core. This core is
found branched at approximately half of the mannose residues by a(1-2) mannosylation.
Further mannosylation of AcPIM2 to AcPIM3 was assigned to PimC (RvD2-ORF1);35

however, this was questioned by the lack of change in PIM composition upon the disruption
of PimC in M. bovis.21 The enzyme catalyzing the following step in the pathway, marking the
beginning of the LM synthesis, through biosynthesis of AcPIM4 from AcPIM3, has yet to be
identified. PimE (Rv1159) is associated with the late stage biosynthesis of PIMs and is
involved in the biosynthesis of AcPIM5 and, potentially, AcPIM6.

36 PimF (Rv1500) was
thought to be involved in the synthesis of AcPIM6,

37 but was identified as LosA, a glyco-
syltransferase not involved in this pathway.38 Kovacevic and coworkers identified a lipo-
protein, LpqW, involved in the conversion of PIM to LAM. A mutant lacking LpqW was
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unable to form LAM; however, another mutation in PimE partially restored the LAM
biosynthesis.39–41 The exact function of LpqW is under investigation.

The use of a polyprenylphosphate sugar donor (i.e. polyprenyl monophosphomannose,
PPM) synthesized by polyprenol monophosphomannose synthase (Ppm1) takes place after
the formation of AcPIM4 in M. tuberculosis.23,34,42,43 LM can be viewed as PIMs extended
with additional Manp residues supplied by C35/C50 PPM (C35/C50-P-Manp), forming
‘‘linear’’ LM that contain a(1-6) Manp residues.20,22 Ppm1 (Rv2051c), encoded by the ppm1
gene, catalyzes the synthesis of C35/C50-P-Manp from GDP-Manp and polyprenols.
Recently, a novel enzyme a-mannopyranosyltransferase (ManT), MptA (Rv2174) involved
in the synthesis of core mannan backbone, was reported.44–46 MptB was also characterized as
a PPM-dependent a(1-6) mannosyltranferase required in the early stages of mannan bio-
synthesis for proximal a(1-6) core Cg-LM-A and Cg-LM-B in C. glutamicum.23 The core
mannan backbone is branched via glycosylation catalyzed by Rv2181, resulting in the
characteristic a(1-2)-linked branches found in LM and LAM.

D. Biosynthesis of LAM

Glycosylation of the ‘‘mature’’ LM with arabinan results in formation of LAM. The ela-
boration of the mannan core with arabinosyl residues is accomplished by a group of ara-
binosyltransferases (EmbC and other AraTs) where the arabinofuranosyl moieties in
the arabinan core is a(1-5)-linked. Work by Berg et al. extended the model of arabinan

Figure 2. Current model of M. tuberculosis ManLAM with structurally related components PIMs, LM, and LAM. The exact

nature of the LM-arabinan linkage is yet unknown, and the questionmark reflects this uncertainty.PIM2 is a precursor both for LM

and LAM. In both LM and LAM, the mannan domain contains a a(1-6)-linked Manp backbone substituted at C-2 by a single

Manp unit. The arabinan domain is a linear a(1-5)-linked arabinfuranosyl polymer with two types of oligosaccharide branch

points; (a) branched hexa-arabinfuanosides: [b-D-Araf(1-2)-a-D-Araf(1-]2(3,5)-a-D-Araf(1-5)-a-D-Araf and (b) linear tetra-

arabinofuranosides: b-D-Araf(1-2)-a-D-Araf(1-5)-a-D-Araf(1-5)-a-D-Araf.Themannose cap terminating the arabinan domain
has eitheramonoManp residue, adimannoside a-D-Manp(1-2)-a-D-Manp, or trimannoside a-D-Manp(1-2)-a-D-Manp(1-2)-

a-D-Manp found at C-5 of terminal Araf. R1, R2, and R
3
are fatty acyl-chains. C35/C50-P-Manp indicates a polyprenylmonopho-

sphomannose.The a, b, c, and d values are species dependent. Enzymes indicated by arrows are involved in the biosynthesis of

these lipoglycans. PimC was found in M. tuberculosis CDC1551but absent in M. tuberculosis H37Rv. Classification of the glyco-

syltransferase by their CAZy family is indicated in brackets (CAZy stands for carbohydrate-active enzymes; www.cazy.org).
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biosynthesis by showing that EmbC plays a major role in the LAM-arabinan biosynthesis.47

The EmbC protein appears to possess two domains. The N-terminal domain has 13 predicted
transmembrane spanning helices. The C-terminal hydrophilic extracytoplasmic domain
promotes chain extension in LAM, as established by using an embC knock-out mutant of
M. smegmatis complemented with plasmids expressing truncated embC genes, and an EmbC-
specific peptide antibody.48 The length of the arabinan core is species-dependent,49 but in
all species the arabinan backbone is punctuated with a branched hexaarabinofuranoside
motif and a straight-chained tetra-arabinofuranoside motif. The penultimate arabinose
residue of each branching chain is glycosylated via b(1-2)-linkage to the terminal arabi-
nofuranosides, which often terminates with a(1-5)-linked mannose residues. The compo-
sition of this mannose cap is also species-dependent. Some species lack a capping structure,
whereas others possess up to a trimannoside of a(1-6)-Manp linked sugars. Multiple
ManTs are involved in the sequential addition of mannopyranosyl units donated by
decaprenyl-P-Manp on the periplasmic side of the plasma membrane. The distinct role of
ManT (Rv2181), involved in the formation of di- and tri-Manp motifs of ManLAM, is a
subject of interest in the light of evidence that Rv2181 plays a dual role of Man capping and
mannan-core branching.50 The investigation provides a tool for further study of ManLAM in
the pathogenesis of TB.51 Recent findings have identified another novel enzyme, Rv1635c
(and MT1671), responsible for the addition of terminal Manp residues to the mature LAM in
M. tuberculosis.52

3. MYCOLYLARABINOGALACTAN (mAG): STRUCTURE AND BIOSYNTHESIS

A comprehensive review of the structure and biosynthesis of the mycolylarabinogalactan
(mAG) component of mycobacterial cell wall has been adequately covered elsewhere.49

Nevertheless, a summary of the biosynthetic pathway is included as a guide to understanding
the design, synthesis and evaluation of current inhibitors of the mAG pathway. The mAG is
a major structural component of theM. tuberculosis cell wall. The polysaccharide component
of the mAG is the AG. The linear galactan portion consists of alternating b(1-5) and
b(1-6) galactofuran residues. The arabinan portion is attached to the galactan through the
C-5 position of the b(1-6)-linked galactofuranosides and consists of a(1-5)-linked
arabinofuranosides with some branching introduced by 3,5-a-D-arabinofuranosides. Using
an endogenous arabinase to solubilize the arabinan region of the cell wall, Bhamidi
et al. have also demonstrated that succinyl esters are present on O-2 of the inner-branched
1,3,5-a-D-arabinofuranosyl residues.45 The nonreducing termini of the arabinan are esterified
by mycolic acids. This massive structure contains a Rha-a(1-3)-GlcNAc disaccharide at the
reducing end of the AG, which serves as a linker. The GlcNAc is b(1-4) linked through a
phosphodiester bond to the peptidoglycan. Depending on the species, the amount of my-
colated arabinan termini varies.49 A schematic representation of the mAG moiety and the
main enzymes involved in the biosynthetic pathway are presented in Scheme 2.

The biosynthetic pathway of mAG starts with the synthesis of polyprenyl phosphate
molecules. Mycobacteria use polyprenyl phosphate molecules as lipid carriers of activated
sugars for the polysaccharide synthesis. M. tuberculosis uses a decaprenyl phosphate (Dec-P)
carrier obtained from decaprenyl diphosphate, itself synthesized by prenyl diphosphate
synthases (Rv1086 and Rv2361c; Scheme 2).49 Rv1086 encodes E,Z-farnesyl diphosphate
synthase and Rv2361c encodes decaprenyl synthase.53–57

Once the Dec-P is available, the true AG synthesis begins with the synthesis of the linker,
followed by parallel synthesis of the arabinan and the galactan. It is believed that a uridine
diphosphate-N-acetylglucosamine (UDP-GlcNAc) transferase, Rfe (Rv1302, ortholog to
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E. coli WecA) loads GlcNAc-P onto Dec-P to start the synthesis of the linker.49 The second
saccharide is then added by the rhamnosyltransferase WbbL (Rv3265c).58 Inactivation of a
temperature-sensitive mutant of M. smegmatis mc2155 showed that WbbL is essential for the
formation of the disaccharide linker connecting AG and peptidoglycan; therefore, inhibition
of WbbL is expected to shut down the mycobacterial cell wall formation. Once the linker is
formed, the galactan is then elaborated onto the linker by galactofuranosyltransferases
(GlfT; Scheme 2). To date, only two GlfT enzymes have been identified. These enzymes
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use UDP-Galf as the activated galactofuranosyl donor, which is synthesized by
UDP-Galp mutase (UGM, Rv3809c) through the conversion of uridine diphosphate
(UDP)-galactopyranose (Galp) to the corresponding furanose (Galf), which is obtained by the
conversion of UDP-glucose to UDP-Galp by an epimerase, predicted to be Rv3634.59 The
transfer of the first Galf residue onto the Rha-a(1-3)-GlcNAc linker is performed by a
galactosyltransferase, GlfT2 (Rv3782), to yield decaprenyl-P-P-GlcNAc-Rha-Galf-Galf.61

After the priming of the pathway by Rv3782, the rest of the Galf moieties are transferred
onto decaprenyl-P-P-GlcNAc-Rha-Galf-Galf by another GlfT (Rv3808c). Rose et al. showed
that Rv3808c is bifunctional and is able to synthesize b(1-5) and b(1-6) linkages; this
result might explain why only two GlfT enzyme have been identified.62

The arabinan synthesis is believed to be simultaneous with galactan chain elonga-
tion.44,45 Immediately following addition of the first b(1-6)Galf, it can be decorated at the
C-5 position by Araf residues. The enzymes responsible for the addition of Araf are arabi-
nofuranosyltransferases (AraT, Scheme 2). In contrast with the simplicity of the GlfTs with
only two members, the AraTs have at least two characterized classes of enzymes, Emb and
Aft. AraTs use glycophospholipid, decaprenolphosphoarabinose (DPA) as an Araf donor
during glycosylation. Biosynthesis of DPA from 5-phosphoribopyrophosphate (pRpp) is
performed by three enzymes: Rv3806c, Rv3790, Rv3791.63,64 First, the decaprenylphos-
phoryl-5-phosphoribose (DPPR) synthase Rv3806c, identified as UbiA in C. glutamicum,65

transfers pRpp to decaprenyl phosphate to form DPPR,66 then the 50-phosphate is removed
to give decaprenylphosphoryl ribose (DPR) by a phosphatase, putatively Rv3807c,67 and
DPR is then epimerized to DPA. The epimerization was initially proposed to occur via an
oxidation–reduction process involving two enzymes (Rv3790 and Rv3791);68 Rv3790 (or
DprE1) functions as decaprenylphosphoryl-b-D-ribose oxidase and Rv3791 (or DprE2) as
decaprenylphosphoryl-D-2-keto erythropentose reductase.69 Interestingly, a recent report
by Meniche et al. suggests that a third enzyme, Rv2073c, might also be involved in the
epimerization reaction.67

Alderwick et al. identified and characterized a new enzyme, arabinofuranosyltransferase
A (AftA) (Rv3792), from the emb locus.70 The enzyme catalyzes the transfer of the first
arabinofuranosyl moiety to the galactan for further elaboration by the Emb proteins toward
formation of the AG heteropolysaccharide core, thereby playing a key role in ‘‘priming’’ the
AG biosynthesis. Although both protein classes are arabinofuranosyltransferases, they
cannot functionally replace each other. Additionally, AftA is not inhibited by EMB.
Therefore, AftA represents a distinct drug target for TB. Most recently, Seidel et al. identified
and characterized another arabinofuranosyltransferase B (AftB) (Rv3805c), which plays a
pivotal role in the formation of b(1-2)-linkages in the terminal step of cell wall arabinan
biosynthesis in Corynebacterianeae species such as C. glutamicum and M. tuberculosis.71 Like
AftA, AftB activity is not inhibited by EMB, thereby representing a new drug target for TB.
In addition to the previously characterized arabinosyltransferases (AftA and AftB), Birch
et al. have identified another enzyme, arabinofuranosyltransferase C (AftC) (Rv2673),
responsible for the formation of a(1-3)-glycosidic linkages in the mycobacterial arabinan
biosynthesis.72 On the basis of the analysis of the M. smegmatis AftC mutant and the
Ara:Gal ratio in AG, it is predicted that there are two more arabinofuranosyltranferases,
AftD and AftE (Scheme 2), required for a(1-3)-glycosidic linkages and linear a(1-5)-
glycosidic linkages, respectively.

The specific roles of EmbA and EmbB proteins in the arabinan biosynthesis were well
established in their initial reports and were identified as the target of the antitubercular drug
EMB.12–15 Khasnobis et al. characterized the combined activity of these enzymes as being
responsible for the transfer of two Araf residues, and completion of b(1-2) disaccharide
formation to make the terminal hexaarabinofuranosyl motif, Ara6

73 Knockout stains of
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M. smegmatis lacking a functional gene for either EmbA or EmbB proteins did not produce
any detectable b(1-2) linked products. Also, Zhang et al. recently identified a new
arabinosyltransferase activity independent from the Aft or Emb enzymes, thereby indicating
the presence of additional arbinosyltransferase targets.74

The final step in the biosynthesis of mAG is the esterification of the terminal Araf
residues with mycolic acids. The three members of the Ag85 complex (Ag85A, Ag85B, and
Ag85C) catalyze this step (Scheme 2).75 General details about Ag85 and how it catalyzes
mycolation of terminal ends of the AG are provided in the discussion involving current
synthetic targets toward the inhibition of biosynthesis of mAG pathway.

4. INHIBITION OF LM/LAM BIOSYNTHETIC PATHWAY

Table I summarizes some of the main enzymes involved in the LM/LAM biosynthetic
pathway and refers to a number of synthetic compounds related to their inhibition. Using the
substrate requirements of PimA and PimB0, Dinev et al. developed galactose-derived phos-
phonate analogs 1 and 2 of myo-inositol-1-phosphate (IP) and PI, respectively, as possible
inhibitors of those enzymes (Fig. 3).76 In a cell-free radiolabeled mannosyltransferase assay,
the IP analog was an effective inhibitor of PimA at 0.01mM, while PI displayed a weak
inhibition of PimB0 at concentrations up to 1mM.

In order to probe the biosynthesis of the mannan portion of LM/LAM, a series of
prenyl-based photoactivable probes with a benzophenone moiety and flexible linkers were
prepared by Guy et al. through the utilization of Ppm synthase and a PPM-dependent
a(1-6)mannosyltransferase, and tested for their ability as substrates for recombinant Ppm
synthase (Mt-Ppm1/D2).77 These probes were also tested for inhibitory activity, upon
photoactivation, against recombinant Mt-Ppm1/D2, and M. smegmatis a(1-6)mannosyl-
transferases. All the synthesized probes functioned as very good substrates for Mt-Ppm1 in
the Ppm synthase assay, suggesting that changes (such as saturation, unsaturation, chain
length, etc.) at the lipid portion of polyprenyl phosphates may be well tolerated. Upon
photoactivation, several of these compounds showed inhibitory activity against Mt-Ppm1
obtained from cell extracts. The probes were also screened for activity in a radiolabeled
mannosyltransferase assay. Probe 3 was the best among them and showed 71.5 and 83.9%
inhibition in mannosyltransferase activities against M. smegmatis a(1-6)-mannosyl-
transferase and Mt-Ppm1/D2, respectively (Fig. 4).77

The understanding of the substrate scope of PPM-dependent a(1-6)-mannosyl-
transferase and substrate–enzyme interactions is essential for the design and synthesis of
potential inhibitors. Brown et al. designed and studied a panel of octyl a(1-6)-poly-
saccharides (a-D-Manp(1-6)-a-D-Manp-O-octyl) as substrate analogs.78 The synthetic
mannosides (4–7; Fig. 4) were mannosylated in a cell-free assay. In a similar approach,
Subramanian et al. first used monofunctionalized disaccharides with modification at the
20-position (8–11; Fig. 4) to probe the substrate scope of the PPM-dependent a(1-6)-
mannosyltransferase.79 The synthetic analogs with small substituents (9–11) acted as sub-
strates for the enzyme with the exception of compound 8 bearing a methoxy substituent at
the 20-position. In a cell-free assay for PPM-dependent mannosyltransferase activity, none of
the synthetic analogs showed inhibitory activity against the enzyme. Furthermore, the
20-deoxygenated analog 9 was recognized by the enzyme as a substrate, implying that hy-
drogen bonding interactions between the protein and the 20-OH are not critical for catalytic
activity. Given the outcome of the substrate scope and inhibitory potency of the mono-
functionalized analogs presented above, a series of di-functionalized disaccharides 12–17

(Fig. 4) having a modification at the 2-OH and 6-OH positions on the nonreducing end and
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an anhydro-sugar 18 derived from D-mannose were synthesized. In the PPM-dependent
ManT assay, none of the compounds proved to be promising substrates for the enzyme.
These results can be explained by the absence of a hydroxyl group at C-60 position which is
required for further glycosylation by the enzyme. Using a 0.2mM concentration of com-
pound 20 as a substrate for mannose transfer, a 2.0mM concentration of amino or halide
substituted analogs produced weak to moderate inhibition (30–57%). Compounds 12, 13,

and 14 inhibited the reaction by 57, 33, and 30%, respectively.80

To further test the substrate scope of the enzyme, a homologous series of mono- through
tetrasaccharides (19,81 20–22; Fig. 4) was synthesized and screened to probe the effect
of acceptor length on activity. In addition, a panel of deoxy and methoxy analogs of 20

(23–34; Fig. 4) were synthesized and probed using the previously reported protocol.82 The
di-saccharide motif is the most significant feature recognized by the enzyme, as increases
in activity were not obtained by moving to larger oligosaccharides. Among other important
findings, methylation of hydroxyl groups at C-2 of either mannopyranose residues
in the disaccharide substrates resulted in complete loss of activity, suggesting that a(1-2)-
mannopyranosyl branches in the mannan core of LM/LAM occurs after the assembly
of the larger a(1-6)-linked mannan. By using extensively modified disaccharides (either
deoxy or methoxy at each position), the authors shed light on the adaptable substrate
scope of the synthetic analogs for use in inhibitor design. Deoxygenation at all
positions, except C-20/C-4 in the parent disaccharide 20, led to loss of activity, indicating
possible hydrogen bonding interactions between the enzyme active site and the acceptor
analogs.83

Two additional structural motifs were discovered linked to mannopyranose capping
residues, 5-deoxy-5-methylthio-pentose, and its sulfoxide counterpart from M. tuberculosis
and M. kansasii.84–86 Turnbull et al. established that the motif was 5-deoxy-5-methylthio-a-
xylose (35 MTX),87 and Lowary and co-workers assigned these monosaccharides as having a
D-configuration and established their linkage as a(1-4) to mannopyranose residue of LAM
(Fig. 5).88 The disaccharides formed between a-methyl mannoside and either MTX 35 or
MSX 36 are shown in Figure 5.

5. INHIBITION OF THE mAG BIOSYNTHETIC PATHWAY

A list of some of the enzymes involved in the mAG biosynthesis, along with current synthetic
inhibitors, is shown in Table II. Because the biosynthetic pathway of mAG starts with the
synthesis of polyprenyl phosphate molecules, targeting prenyl phosphate synthase (Rv1086
and Rv2361c) is a possible route to the inhibition of mAG pathway. Schulbach et al.
synthesized o,E-geranyl diphosphate as substrate analogs of the Z-farnesyl diphosphate
synthase; however, only one of the compounds (37) showed any significant activity (Fig. 6).55

OMeO
HO

OH
OH

P
O

O

O
OMeO

HO
OH

OH

P
O

O

O

OC(O)C15H31

OC(O)C15H31

1 2

Figure 3. Galactose-derived phosphonate analogs of IPand PI. IP,myo-inositol-1-phosphate; PI, phosphatidylinositol.
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Figure 4. Prenyl-based photoreactive probe andmannose-derived substrates used in the study of ManTs.
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Following the availability of Dec-P, actual AG synthesis begins with the synthesis of
the diglycosylphosphoryl linker. Currently no study of the UDP-GlcNac transferase, the first
enzyme of the linker synthesis, has been reported. The second saccharide is added by the
rhamnosyltransferase WbbL (Rv3265c). Although no inhibitors of the rhamnosyltransferase have
been reported to date, WbbL has generated some interest since Grzegorzewicz et al. developed a
microtiter plate-based assay to evaluate potential inhibitors of the rhamnosyltransferase.89

A significant amount of research has been dedicated to the development of UDP–sugar
analogs as inhibitors of the UDP-Galp mutase (UGM). Tangallapally et al. developed
libraries of nitrofurans as UGM inhibitors; some of the compounds (38–77) displaying
inhibitory activity are presented in Figure 7.90 A few of the nitrofuranylamides were further
characterized by Hurdle et al.;91 the microbiological assessment confirmed that the
nitrofuranylamides are lead compounds for drug development.

A time-dependent inactivation of UGM, using fluorinated UDP-Galf derivatives 78a and
78b, was first shown by Liu et al.92 Later, Caravano et al. extended this work using the
nonfluorinated exo-cyclic UDP-glycal derivative 79.93 Pursuing their synthetic efforts,
Caravano et al. synthesized two more fluorinated analogs 80a and 80b (Fig. 8) and subjected
them to a time-dependent study in anticipation of improved inactivation.94 Both 80a and 80b

showed significantly slower inactivation kinetics compared with the nonfluorinated analog.
Most recently, the same group reported the synthesis of three C-glycoside analogues of UDP-
Galp as conformational probes to explore the binding pocket of UGM.95 The compounds 81
and 82 achieved lower inhibition percentages than the furanose compounds when tested against
E. coli UGM. However, 81 and 82 did not display a time-dependent inactivation like all the
other tested compounds, suggesting that these derivatives might act as competitive inhibitors.

In addition, a biochemical study of UGM revealed that the enzyme uses flavin adenine
dinucleotide (FAD) as a cofactor.96 Using this information, Pinto et al. synthesized transi-
tion-state mimics of the proposed oxocarbenium intermediate.97,98 The synthesized sulfo-
nium, ammonium, and selenium ions 83–88 (Fig. 9) did not display a very strong inhibitory
activity against UGM at a concentration of 10mM. Itoh et al. worked on a linear substrate
analog, UDP-galactitol 89 shown in Figure 9.99 The linear compound inhibited UGM
activity by 54% at 50 mM. Another attempt by Pan et al. involved synthesis of acyclic
inhibitors 90 and 91 (Fig. 9) that produced weak inhibition (0–11%) at 2M.100 Martin and
co-workers prepared UDP-Galf analogs and transition-state analogs 92–98 built around
a 1,4-dideoxy-1,4-imino-D-galactitol.101–103 The inhibitory activities of the various galactitol-
based inhibitors against UGM are shown in Figure 9.

Kiessling et al. proposed a slightly different approach, moving away from substrate and
transition analogs by using a fluorescence polarization-binding assay to screen commercially
available libraries.104 This initial screening led to the discovery of three hits 99–101 (Fig. 10)
with a common five-membered thiazolidinone core. A library of compounds with the
thiazolidinone core was designed and screened for activity, revealing three more possible
inhibitors 102–103 with a 5-arylidene 4-thiazolidinone structure. Unfortunately, further

O

HO
OO

HO

OHHO

OCH3

H3CX OH

35 X = S (MTX)
36 X = S=O (MSX)

Figure 5. Xylose residues found inmannan cappingmotifs.
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Figure 7. UGM inhibitors based onnitrofuran derivatives.
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characterization of those compounds demonstrated that the synthetic compounds react with
thiols under physiological conditions, compromising their future as leads in drug discovery.
Further studies on this type of compounds revealed that a 2-aminothiazole scaffold could be
used to replace the thiazolidinone core.105 From this work, four compounds emerged as
potential molecules of interest for drug development 104–107 (Fig. 10). More recently,
Dykhuizen et al. expanded this family of inhibitors with compounds displaying higher affi-
nity to UGM, with compound 108 as the most potent inhibitor at IC50 value of 3.5 mM.106

The inhibitors are believed to bind the substrate-binding pocket and an adjacent subsite,
explaining the higher binding affinity.

Wen et al. developed a series of analogs of the linker to inhibit GlfT2.107 Three compounds
109–111 (Fig. 11) displayed interesting inhibitory activity in a cell-free GlfT2 inhibition assay.
When they reported the identification of Rv3808c, Rose et al. also probed the substrate spe-
cificity of the recombinant enzyme and discovered a preference for trisaccharide substrates over
mono- or disaccharides.62 The same group later reported a coupled spectrophotometric assay
allowing a high-throughput screening of potential inhibitors.108 Before the spectrophotometric
assay was reported, efforts to inhibit the GlfT had been reported. Cren et al. designed imino-
sugar analogs 112a and 112b as potential inhibitors of Rv3808c.109 Both compounds were
synthesized with a deoxygenated C-2 position to promote stability, and the racemic products
were evaluated against UDP-Galf transferase from M. smegmatis using a formaldehyde release
assay. Compound 112a showed moderate inhibitory activity (IC505 4.8mM) compared with its
diastereomer 112b that only showed 40% inhibition at 8mM (Fig. 11).

Makarov et al. recently reported the design, synthesis, and in vitro testing of 1,3-ben-
zothiazin-4-ones (BTZ) represented by compound 113a (Fig. 12).69 The S enantiomer 113b,
called BTZ043, displayed a minimum inhibitory concentration (MIC) of 1 ng/mL (2.3 nM)
against M. tuberculosis H37Rv, and 4 ng/mL (9.3 nM) against M. smegmatis. The uptake,
intracellular killing, and potential cytotoxicity ex vivo as well as the in vivo efficacy of BTZ
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were evaluated. Because the compound displayed bactericidal activities in the range of INH,
its target was investigated. The BTZ family of compounds was found to target DprE1

(Rv3790).
As for the AraTs, current research efforts are aimed at the development of EMB analogs.

Jia et al. reported the pharmacodynamic and pharmacokinetic characterization of a pro-
mising EMB analog, SQ 109 (114), shown in Figure 13.110 Similarly, Bogatcheva et al.
studied new diamine scaffolds as potential EMB analogs.111 Compound SQ 775 (115) also
emerged from in vitro and in vivo testing as a lead for drug development.111 Yendapally et al.
recently published the synthesis of analogs 116 and 117 that inhibited the growth of
mycobacteria at comparable concentration to EMB (1.6, 1.6, and 0.8 mg/mL, respectively).112
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Faugeroux et al. developed EMB analogs 118–120 (Fig. 13) with a more rigid scaffold;
unfortunately, the presence of conformational restriction seemed to lower the activity of the
compounds.113

Most of the research efforts for inhibition of the arabinan biosynthesis, for both LAM
and mAG, have focused on the development of DPA analogs. An octyl 5-O-(a-D-arabino-
furanosyl)-a-D-arabinofuranoside disaccharide with a free hydroxyl (the octyl chain
mimicks the lipid component of the natural donor, DPA) is a recognized acceptor by ara-
binofuranosyltransferases involved in the biosynthesis of arabinan portions of AG and LAM
in mycobacterial cell wall synthesis. Recently, partially blocked disaccharide analogs at the
nonreducing end have been shown as modest inhibitors of arabinofuranosyltransferases in a
cell free assay.114–116 Pathak et al. synthesized a series of disaccharides modified at the
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C-50-position of the disaccharide and utilized them to probe their ability to act as acceptors as
well as inhibitors for M. tuberculosis H37Ra (Fig. 14).117 When probed for their ability as
potential acceptors of [14C]Araf from DP[14C]A in the transferase assay,118 121, 123, 125–129
did not show any detectable acceptor activity due to the blocking of C-5 hydroxyl group at
the nonreducing end. Among all the synthetic analogs, compound 125, having a sterically
large dicyclohexylamino substitution, displayed promising inhibitory activity, exhibiting an
IC50 5 1.56mM as determined in a cell-free enzyme assay. It also exhibited an MIC of
8 mg/mL in a bacterial growth inhibition assay against M. tuberculosis H37Ra. Compound
125 also showed inhibitory activity against M. avium complex (MAC) NJ211 with an MIC of
16 mg/mL. Expansion of the library of C-50-modified disaccharides led to compounds
130–132 (Fig. 14),119 followed by the recent report of 133–135.120 This a(1-5)-linked ara-
binofuranoside disaccharide library revealed additional leads for future drug development.

From a panel of C-phosphonate analogs of DPA synthesized by Centrone et al., one
of the C-phosphonate derivatives, 136, displayed promising inhibitory potency against
M. tuberculosis strain H37Rv with an MIC of 3.13 mg/mL.121 Based on this success, a series of
sulfone and phosphonic acid analogs of DPA were synthesized (Fig. 15; see only active
compounds 137–140) and tested for their ability to prevent growth of M. tuberculosis strain
H37Rv using a fluorescence-based Alamar Blue microplate assay.122 Weak to modest growth
inhibitory activity for the synthetic compounds was reported, as shown in Figure 15. In the
same approach, Cociorva et al. reported the synthesis of a panel of oligosaccharides
containing C-5 arabinofuranosyl residues 141–155 (Fig. 15).123 It should be noted that
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Figure 11. mAGP linkeranalogs and deoxygenated iminosugars as inhibitors of galactosyltransferase.
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compounds 141–143 represent structural motifs found within the mycobacterial arabinan.
Each member of the panel contained a modification at the C-5 position at the nonreducing
end, independently with amino, azido, fluoro, and methoxy functionalities. To date, the
inhibitory activity for 144–155 against bacterial growth has not been reported.

In order to access additional substrates for AraT inhibition, Cociorva et al. modified
compounds 141–143 at C-3(C-30) position(s) with amino, azido, or methoxy functionality to
constitute a library of additional compounds (Fig. 15).124 Compounds 156–160 and 162–164

having modification at C-3(C-30) position(s) were screened for their ability to act as sub-
strates for AraTs responsible for a(1-5) and b(1-2)-linked arabinan chain using a mem-
brane fraction (devoid of enzyme for the installation of a(1-3)-linked residues in
mycobacterial arabinan) from mycobacteria. All of the synthetic analogs 156–160 and
162–164 showed modest inhibition at 3.6mM against AraTs, with those of 142 being the
most potent. In a subsequent Alamar Blue mycobacterial growth assay, only low levels of
activity of the synthetic compounds were reported when screened at a concentration of
3.6 mg/mL.

Davis et al. also synthesized galactofuranosyl alkyl thioglycosides 165–167 (Fig. 16) as
possible DPA analogs.125 The antibacterial activity was evaluated against M. smegmatis
ATCC 14468. The compounds exhibited moderate to good activity, with 166 having the
highest antibacterial activity with an MIC of 1 mg/mL. A parent family of N,N-dialkyl
sulfenamides and sulfonamides 168–170 (Fig. 16) was later synthesized and displayed
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resistance associatedwith ethambutol, 114--120 are synthetic analogs of ethambutol.
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a similar level of activity.126 Marotte et al. reported the synthesis of imino sugar-oligo-
arabinofuranoside hybrids 171–177 (Fig. 16) as possible inhibitors of arabinofuranosyl
transferase.126 Designed as DPA analogs, the compounds were assayed using an arabino-
furanosyltransferase assay employing [1-14C]-b-D-arabinofuranosyl-1-decaprenyl phosphate
([1-14C]-DPA) as the arabinose donor and an octyl 5-O-a-D-arabinofuranosyl-a-D-arabino-
furanoside as the synthetic acceptor, and showed good inhibitory activity. Chaumontet et al.
continued the synthetic efforts around the imino-sugar oligoarabinofuranoside hybrid
skeleton and reported the synthesis of two hydrolytically stable arabinofuranoside analogs
178 and 179 (Fig. 16).128 The authors mentioned that 178 displayed an activity similar to
parent compound 172.

A different series of metabolically stable DPA isosteres, b-D-arabinofuranosyl triazole
compounds having various hydrophobic side chains, were synthesized by Wilkinson et al. and
their inhibitory potency was tested againstM. Bovis BCG.129 A weak to moderate activity for
180–182 was reported (Fig. 16). The inhibitory activity was shown to be dependent on the
nature of hydrophobic group attached to the heterocyclic moiety, although a precise struc-
ture–activity relationship is not fully understood from their study. Bosco et al. synthesized
DPA analogs 183 and 184 containing an arabinose or an aza-arabinose phosphonate carrying
a polyprenyl chain (Fig. 17).130 The compounds displayed modest inhibitory activity against
M. tuberculosis H37Rv. In a similar fashion, Joe et al. synthesized analogs 185–188 with
a 2-deoxy-2-fluoro-arabinofuranosyl moiety, a phosphate group, and a polyprenyl chain
(Fig. 17).131 Antibacterial activities of the synthetic analogs are not reported.
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Esterification of the terminal Araf residues with mAG is the final step in the biosynthesis
of mAG, catalyzed by Ag85 complex (Scheme 2). These enzymes represent interesting drug
targets for many reasons. First, the Ag85 enzymes are secreted to the periplasmic space via
the SecA/SecYEG pathway promoted by the N-terminal signal sequence found on all three
Ag85 enzymes, which should promote more efficient targeting by minimizing the effects of
drug efflux pumps and drug modification systems. Second, Ag85 catalyzes a mycolyltransfer
reaction, where the mycolate moiety is removed from TMM and transferred to a carbo-
hydrate acceptor molecule. The hypothesis for all three enzymes using TMM as the mycolyl-
donor is based on genetic data, biochemical data, and thorough characterization and
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inspection of the six available crystal structures.132–134 The possibility of all three Ag85 en-
zymes using TMM as a common mycolyl-donor simplifies inhibitor development and allows
simultaneous targeting of all three Ag85 enzymes with the same compound. Although studies
have shown that Ag85 possess some redundant biochemical activity, no evidence exists for a
viable organism where two or more Ag85 genes have been knocked out. Studies have shown
that at least three different sugars act as mycolyl-acceptors producing TDM, mAG, and
glucose monomycolate.74,135,136 The basis for mycolyl-acceptor discrimination is just now
being studied. Third, recent studies by Harth et al. show that inhibiting Ag85 activity while
administering isoniazid exhibits a synergistic growth inhibition.137 This indicates that suc-
cessful inhibitors of the Ag85 enzymes will improve delivery of other antitubercular drugs.
This was very recently shown to be true forM. smegmatis by Nguyen and Pieters who showed
an Ag85A knockout strain that exhibited increased sensitivity to imipenum.138 Fourth, the
mechanistic details of the Ag85 enzymatic reaction are now well characterized and this in-
formation has been used to design mechanism-based inhibitors. In fact, the rationale for most
of these designs is based on the mechanistic knowledge of the Ag85 enzymes. These enzymes
catalyze mycolyl transfer using a double-displacement mechanism that proceeds through a
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covalent tetrahedral transition state, similar to the mechanism of serine proteases. After
the initial report by Belisle et al. that 6-azido-6-deoxytrehalose (ADT) inhibited Ag85
activity in their assay,75 other inhibitors were designed and synthesized. To date, various
libraries have been designed based upon phosphonate compounds (196–201),139,140 sulfonate
compounds (active compound 202)141 to mimic the tetrahedral transition state, and two types
of trehalose analogs 189–195 (Fig. 18) designed, two of them, 189 and 190, before the crystal
structure was reported.142,143 Once synthesized, the compounds were assayed using the
radiometric assay described by Belisle.75 The second trehalose-based library 191–195 was
derived from mechanistic studies and included substrate analogs.143 The two libraries of
compounds were assayed using a disk diffusion assay against M. smegmatis (ATCC 14468)
and their inhibitory activities are presented in Figure 18. Only the most potent compounds are
shown.

Recently, Boucau et al. reported a spectrophotometric coupled assay measuring
M. tuberculosis Ag85C activity.144 This assay was used in two different lines of inquiry. First,
it was used on a semipreparative scale to allow characterization of the formed products.145

Belisle et al. had previously shown the production of TDM using Ag85C.75 Therefore, Sanki
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et al. synthesized a number of arabinofuranosides that were tested as acyl acceptors in the
Ag85C catalyzed transfer reaction.145 Using both NMR and ESI-MS, this study clearly
showed that Ag85C readily catalyzes acylation at the 5-OH position of arabinofuranose-
based compounds in vitro. Although both a- and b-arabinofuranoside were modified at the
two and five positions, an arabinosylarabinoside more closely mimicking the nonreducing
termini of the AG was modified only at the five position, even though a 2-OH was available
for acylation. Second, the assay was tested for feasibility in high-throughput screening ap-
plications using the NIH Clinical Collection (NCC). Interestingly, two known mycobacterial
drugs, ebselen and clofazimine (a first line leprosy drug), showed inhibition of Ag85C activity
(unpublished data), thereby indicating that the Ag85 complex may be one of the targets
inhibited by these compounds. Other compounds exhibited significant inhibitory activity of
both Ag85C and M. smegmatis growth, and so are being pursued as lead compounds for the
design of Ag85 inhibitors.

The assay was then used to test the possible inhibitory activity of methyl 5-S-alkyl-
5-thio-D-arabinofuranosides (203–208) synthesized by Sanki et al.146 Although compounds
containing a 5-S-octyl side chain showed activity in a growth inhibition assay against
M. smegmatis ATCC 14468, the compounds were inactive in the spectrophotometric
coupled assay. Most recently in another attempt, Sanki et al. synthesized a panel of
D-arabinose (209–211) and trehalose (212–214) based compounds having ester, a-ketoester,
and a-ketoamide functions, so as to design transition state inhibitors for Ag85C (Fig. 19).147

In the disk diffusion assay, none of the analogs showed inhibition against the growth of
M. smegmatis ATCC 14468. In the enzymatic assay, among all the compounds tested, only
the methylester 209 was found to show activity at millimolar concentration (Fig. 19).
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6. CONCLUSION

It is clear that extensive and innovative research is being conducted in broad areas of
chemistry to identify which mycobacterial biosynthetic enzymes may serve as potential tar-
gets for development of new antitubercular therapeutics. This review presents the recent
progress toward the inhibition of mAG and LAM synthesis with an emphasis on the
discovery of new enzymes, the characterization of known drug targets, as well as the com-
positions of substrate analogs, transition-state analogs, and the development of high-
throughput assays for the screening of existing libraries of compounds. From the studies
highlighted here, several new enzymes and their specific roles have been discovered and
characterized, which may be attractive targets for tubercular intervention. It appears that
among several antibacterial agents developed so far, the nitrofuranylamide compounds (see
Fig. 7) appear to be the most promising candidates for glycosyltranferase inhibition. How-
ever, much of the work presented herein is very recent, and it is too early to conclude which
of these targets and approaches are likely to be the most effective.

What is clear is that there are an increasing number of reports of drug-resistant TB
worldwide. Thus, there is a continued need to identify new drug targets and new avenues of
treatment. It is anticipated that the discovery of these targets will eventually lead to the
development of small molecule inhibitors with the potential to add to the arsenal of drugs
available to treat drug-resistant forms of M. tuberculosis.
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